Effect of O₂ Traces in the Carrier Gas on Quantifying the Active Species in Catalysts

Simon Yunes, Justin Hardwick, Pat Wommack and Jason Exley. Micromeritics, Particulates System

Determination of the dispersion of active species on catalysts is a tremendous tool to discover and predict the activity of the catalyst. Thus, dispersion of active species indicate the quantity of active particles located on the surface of a catalyst that are accessible and have a direct contact with the reactant molecules that have to react and produce a new substance. Hence, a correct measurement of the dispersion of the active species predict the activity of the catalyst for a specific catalytic process.

The technique comprises the reduction of the active particles in the catalyst at elevated temperature. Usually Hydrogen is widely used for this task and that could be used as pure hydrogen or a mixture of H_2 balanced inert gas. Upon completion of reduction and the catalyst temperature is brought back to room temperature, the catalyst is then titrated by using a calibrated loop and dosing known amount of active gas, usually is carbon monoxide or hydrogen. Therefore and upon saturation, the amount of adsorbed active gas is being calculated and related to the accessible active species on the surface of the catalyst. This method of titration is by far, the most useful tool to predict the activity of the catalyst.

The problem arises during the removal of the remaining hydrogen on the catalyst after reduction. This task is usually done by flowing an inert gas over the sample at the same reduction temperature. Removal of the remaining H_2 can take some time, could take one hour or sometimes more than that depending of the active particles themselves and their ability to retain H_2 . Upon removal of the remaining H_2 , the sample temperature is brought back to room temperature having the inert gas still flowing over the sample. If the inert gas being used, contains traces of O_2 , will slightly oxidize the freshly produced reduced particles, and hence, change the composition of the accessible particles on the surface that used to determine the dispersion.

Experimental

A 0.5% Pt/Alumina Micromeritics reference material with a 35 percent dispersion plus or minus 5, was considered for the experiments. The sample was first reduced by flowing a 100 ml/min of hydrogen at 400C for one hour. Upon reduction, sample was swept by 100 ml/min of Helium at the reduction temperature for 30 minutes. Then the sample temperature was reduced to room temperature at which pulse of active gas was carried out until saturation. A mass spectrometer Cirrus II was used as a detector to follow the masses involved in the analysis.

The first analysis was carried out after reduction and a complete removal of the remaining hydrogen. Pulse of 0.0513 ml were carried out and signal of mass 2 (H_2) was followed by mass spectrometer to ensure complete saturation of the sample. Figure 1 shows the spectrum of H_2 where one pulse was completely adsorbed while peaks 5 to 9 show complete saturation and were taken into account for the determination of the total amount of H_2 adsorbed. (See table 1)

Following this first analysis, sample was taken back to 400C under the flow of 100 ml/min of helium to remove all adsorbed H₂. A complete removal of H₂ at 400C was followed by the signal of H₂ (mass 2) on the Mass Spectrometer. Right after, the sample was brought to room temperature under the same flow of helium. At this step, a 0.1 ml of air (approximately 0.03ml of oxygen) was injected using a syringe to the carrier gas in order to simulate the presence of traces of O₂ in case of the use of a contaminated Helium in order to see its effect on the dispersion. Figure 2 shows for the same pulse technique, larger amount of H, being adsorbed by the sample. In this case, 4 full injections were completely adsorbed by the same sample shown in figure 1. This effect demonstrate that the presence of traces of O₂ in the inert gas used to clean the sample from the remaining H, after reduction, will badly alter the dispersion results. In this case the dispersion was inflated by a factor of 3 approximately. (See table 2)

The same procedure described above was repeated but Carbon Monoxide was used as active gas instead of H₂.

First, the analysis was carried out without the passivation procedure described above. Result of CO chemisorption indicated on figure 3, yield the correct value of the dispersion that is 35 percent plus or minus 5. (See table 3)

Figure 4 shows two spectra corresponding to the CO pulse chemisorption. The above one demonstrates the spectrum

of CO coming from the passivated sample as was done in the case above for hydrogen. A 1/3 of the first pulse was adsorbed while the rest of the peaks indicate saturation.

The below spectrum of figure 4 correspond to mass 44 at indicates the formation of Carbon dioxide while CO being pulsed on an oxidized or passivated sample. The final result of dispersion indicates that the presence of traces of O_2 is responsible for the overestimation of the dispersion on the Micromeritics reference material. (see table 4)

Results of Hydrogen Chemisorption:

Figure 1: Pulses of H₂ over freshly reduced material

Figure 2: Pulse of H₂ over freshly oxidized material

Result of quantities adsorbed as well as dispersion for each analysis are shown here below:

				Peak	Table				
	Peak Nu	umber	Temperati Maximum	ure at ı (°C)	Qı Adsort	uantity led (cm ³ STP)	Cumula /g Quantity (o STP)	tive cm³/g	
		1 2 3 4 5 6 7		303.8 303.0 302.2 301.7 301.1 300.6 300.5		5.012e- 4.095e- 7.009e- 2.234e- 1.236e- 1.501e- 0.0	02 5.0 ⁻ 02 9.10 03 9.80 03 03 03 03 00	2e-02)7e-02)8e-02 0.100 0.102 0.103 0.103 0.103	
		8		301.0		2.130e-	03	0.105	
Element	Percent of Sample Weight (%)	Puls Percent Reduced (%)	e Chemis MxOy X	MxOy Y	y Al	ysis Su MU	Immary Stoichiometry Factor	Atomic Cross-Sectiona Area (nm²)	Density al (g/cm³)
platinum	0.50	100.00	0 2		0 390	.1800	2.000	0.080	0 21.450
	Active Active Particl	Ecop Vo Cun Metal Metal Diamet Cubic	olume at 23 nulative Qu Metal Dispe llic Surface ellic Surface er (hemisp c Crystallite	3.0 °C: antity: ersion: Area: Area: here): Size:	0.0473 0.1051 36.619 0.4522 90.431 30.932 25.777	2 cm ³ S 8 cm ³ /g 5 % m²/g sa 2 m²/g a Å Å	TP STP ample metal		

Table 1: Quantification and measurement of dispersion on the freshly reduced sample determined by H₂ chemisorption

_	Peak Number 1 2 3 4 5 6 7 8 9	Temperat Maximum	ure at a (°C) 303.2 302.9 302.0 301.3 301.0 300.4 202.5	Ad	Quantity dsorbed (cm STP) 5.661e 5.668e 5.642e 5.110e	Cumulat (Quantity (c STP) -02 -02 -02 -02 -02 -02 -02	ive m ³ /g 1e-02 0.113 0.170	
_	1 2 3 4 5 6 7 8 9		303.2 302.9 302.0 301.3 301.0 300.4		5.661e 5.668e 5.642e 5.110e	-02 5.66 -02 -02	1e-02 0.113 0.170	
	2 3 4 5 6 7 8 9		302.9 302.0 301.3 301.0 300.4		5.668e 5.642e 5.110e	-02 -02	0.113 0.170	
	3 4 5 6 7 8 9		302.0 301.3 301.0 300.4		5.642e 5.110e	-02	0.170	
	4 5 6 7 8 9		301.3 301.0 300.4		5.110e	00		
	5 6 7 8 9		301.0 300.4			-02	0.221	
	6 7 8 9		300.4		3.657e	-02	0.257	
	7 8 9		000 5		1.951e	-02	0.277	
	8		300.5		2.074e	-03	0.279	
	9		300.4		3.440e	-04	0.279	
	-		300.6		0.0	000	0.279	
	10		300.4		0.0	000	0.279	
	11		300.5		1.087e	-03	0.280	
	12		300.6		0.0	000	0.280	
	Pu	lse Chemis	sorptio	n /	Analysis S	ummary		
Element Perc Sar Weig	ent of Perce mple Reduc ht (%) (%)	nt MxOy ed X	MxO Y	y	AMU	Stoichiometry Factor	Atomic Cross-Sectional Area (nm²)	Density (g/cm³)
platinum	0.50 100	.00 2		0	390.1800	2.000	0.0800	21.45

Table 2: Quantification and measurement of dispersion on the freshly re-oxidized sample determined by H₂ chemisorption

Results obtained by CO chemisorption:

Figure 3: This figure shows the CO pulse chemisorption on the freshly reduced sample

Figure 4: This figure shown the CO pulse chemisorption on the passivated sample (above) while the spectrum below shown the formation of Carbon Dioxide upon each pulse of CO

				Peak	Та	able					
	Peak Nu	Peak Number		Temperature at Maximum (°C)		Quantity Adsorbed (cm³/g STP)		Cumulative Quantity (cm³/g STP)			
		1	-1 -1	,622.2 ,627.3		0.	.192 .000		0.192 0.192		
		3	-1	,630.1		0.	.000		0.192		
		4	-1	,633.6		0.	.000		0.192		
		5	-1	,631.2		1.209	ə-03		0.193		
		6	-1	,628.0		4.2396	e-03		0.197		
		7	-1	,631.3		2.0896	e-03		0.199		
		8	-1	,627.3		0	.000		0.199		
Element	Percent of Sample Weight (%)	Puls Percent Reduced (%)	e Chemis MxOy I X	MxO Y	y	Analysis S AMU	Sumr Stoi	nary ichiometry Factor	At Cross Are	tomic -Sectional a (nm²)	Density (g/cm³)
platinum	0.50	100.0	D 1		0	195.0900		1.000		0.0800	21.450
	Active Active Particl	ELOOP Vo Cun Metal Metal e Diamet Cubic	olume at 22 nulative Qu Metal Dispe lic Surface lic Surface er (hemisp c Crystallite	2.0 °C: antity: ersion: Area: Area: here): e Size:	0.4 0.1 34 0.4 85 32 27	47476 cm ³ 1 <u>9918 cm³/</u> .6731 % 4281 m ² /g .6245 m ² /g 2.668 Å 7.224 Å	STP o ST samp met	P ple tal			

Table 3: Quantification and measurement of dispersion on the freshly reduced sample determined by CO chemisorption

			Pea	k Tabl	e			
	Peak Number		Temperature at Maximum (°C)	Quantity Adsorbed (cm³/g STP)		Cumulat /g Quantity (c STP)	ive cm³/g	
		1	303.7	,	0.26	33	0.263	
		2	304.1		1.843e-0)2	0.281	
		3	303.9)	1.133e-0)2	0.293	
		4	303.4	ŧ.	4.573e-0)3	0.297	
		5	303.8	3	0.00	00	0.297	
		6	302.9)	0.00	00	0.297	
		7	302.4	ţ	0.00	00	0.297	
	Sample Weight (%)	Reduced (%)	Х́Ү			Factor	Cross-Sectional Area (nm²)	(g/cm ³)
platinum	0.50	100.00) 1	0 19	95.0900	1.000	0.0800	21.450
	Active Active Particle	Loop Vo Cum Netall Metall e Diamete	lume at 22.0 °C julative Quantity letal Dispersion lic Surface Area lic Surface Area er (hemisphere)	0.474 0.297 51.73 0.638 127.7 21.89	76 cm³ ST 78 cm³/g S 33 % 8 m²/g sa 7546 m²/g 95 Å	[P STP mple metal		

Table 4: Quantification and measurement of dispersion on the freshly passivated sample determined by CO chemisorption

Conclusion

It can be concluded from this work that chemisorption technique is highly sensitive to contamination, especially for the inert gas that is used to remove the excess of hydrogen that remains adsorbed by the sample after reduction.

The overestimation of the result will depend on the quantity of contamination existing in the carrier gas. In any case, pure gases are required for a good chemisorption analysis, otherwise, results will not offer any meaning, especially if are related to the activity of the catalyst. In the case of H_2 chemisorption, a large amount of H_2 is being adsorbed. One part is being adsorbed by the atoms of Platinum, while the large amount of H_2 is being retained or adsorbed by the atoms of O_2 located on the platinum atoms on the surface of the solid. However, it can be affirmed that molecules of H_2 are only adsorbed without reaction as spectrum of water indicates the complete absence of it.

Results from CO chemisorption however, show somehow different results. Carbon Monoxide shows higher activity than H₂ over atoms of Platinum, is capable to remove the O₂ atoms and produce carbon dioxide as has been shown on figure 4 resulting in higher dispersion of the material, table 4.

